Recent Results from LHCf

Gaku Mitsuka (Nagoya University, Japan) for the LHCf collaboration

Outline

- Introduction and Physics motivation
- The LHCf detectors
- Status of the LHCf experiment
- First results at $\sqrt{s}=900$ GeV and 7TeV
 - All data at \sqrt{s} =900GeV
 - Focusing on March-May at $\sqrt{s}=7\text{TeV}$
- Conclusions and Future prospects

K.Fukatsu, Y.Itow, K.Kawade, T.Mase, K.Masuda, Y.Matsubara, <u>G.Mitsuka</u>, K.Noda, T.Sako, K.Suzuki, K.Taki

Solar-Terrestrial Environment Laboratory, Nagoya University

Y.Muraki(Spokes person)
Konan University

K.Kasahara, M.Nakai, Y.Shimizu, S.Torii Waseda University K.Yoshida Shibaura Institute of Technology

T.Tamura
Kanagawa University

Totally ~40 collaborators

O.Adriani, L.Bonechi, M.Bongi, R.D'Alessandro, M.Grandi, H.Menjo, P.Papini, S.Ricciarini, G.Castellini, A.Viciani INFN, Univ. di Firenze

A.Tricomi INFN, Univ. di Catania

D.Macina, A-L.Perrot CERN

W.C.Turner LBNL, Berkeley

M.Haguenauer Ecole Polytechnique

J.Velasco, A.Faus
IFIC, Centro Mixto CSIC-UVEG

Introduction

The LHCf experiment...

- aims to reduce the uncertainty of hadron interaction models around the TeV energy region using LHC, which are mainly used in cosmic ray experiments.
- observes neutral particles produced by the p-p collisions emitted in the very forward (including zero degree, $\eta>8.4$), equivalent to air-shower of cosmic ray.
- can discriminate the existing interaction models(e.g. DPMJET3, QGSJET, etc...) by comparison and provide crucial data for building future models.
- will contribute the ultra high-energy cosmic ray observations with high-precision.

Introduction

The LHCf experiment...

- aims tomodels awhich ar
 - observes collision degree,
- can disciDPMJETcrucial d
- will cont

nteraction z LHC, iments.

p-p uding zero cosmic ray. odels(e.g. nd provide

c ray

observations with high-precision.

Introduction

The LHCf experiment...

- aims to reduce the uncertainty of hadron interaction models around the TeV energy region using LHC, which are mainly used in cosmic ray experiments.
- observes neutral particles produced by the p-p collisions emitted in the very forward (including zero degree, $\eta>8.4$), equivalent to air-shower of cosmic ray.
- can discriminate the existing interaction models(e.g. DPMJET3, QGSJET, etc...) by comparison and provide crucial data for building future models.
- will contribute the ultra high-energy cosmic ray observations with high-precision.

Forward measurements

- Zero degree instrumentation slot at 140m away from IPI (ATLAS).
- p-p collision at $\sqrt{s=14\text{TeV}}$ corresponds to $E_{lab}=10^{17}\text{eV}$.

Forward measurements

umentation slot n IPI(ATLAS). = 14TeV ab=10¹⁷eV.

The LHCf detector

- Sampling & imaging calorimeters either side of IP1.
- Two compact towers in both detectors.
 - Tungsten absorbers: 44r.l., 1.7λ
 - 16 plastic scintillator sampling layers
 - 4 position sensitive layers

20mmx20mm + 40mmx40mm Consists of scintillation fibers Located at 6, 10, 30, 42 r.l.

25mmx25mm + 32mmx32mm Consists of silicon strip detector Located at 6, 12, 30, 42 r.l.

Expected phenomena

All figures assume 10⁷ collisions@14TeV

- Spectrum in the forward region at 140m away from IP (=LHCf site).
- Energy resolution is taken into account by smearing the true energy instead of detector simulation.
- Neutron/Gamma ratio is also applicable to the discrimination.

Operation in 2009-10

Run in 2009

- From End of October 2009 LHC restarted operation
 - 450 GeV + 450 GeV → 1.2 TeV + 1.2 TeV
- Few weeks of 'smooth' running allowed LHCf to collect some statistics at 450+450 GeV in the stable beam conditions.
- Extremely useful period to debug all the system
 - No particular problem came out from the run
 - Detectors are working very well and in a stable way

Run in 2010

- Successful data taking at 7TeV ongoing
 - Integrated luminosity ~ I4nb-1 until the technical stop on May.
 - 35M showers and 330K π^0 s obtained (arm I + arm 2).
 - Energy scale calibration with a π^0 peak.
- Statistics improved at 900 GeV > 10times larger than 2009.
- Detector shows good performance with stable quality.
 - Good stability < ±2% level. No radiation problem until May.

Analysis@900GeV (Run2009+2010)

Particle Identification

- Gamma and hadron showers can be discriminated by the difference of the longitudinal shower development.
- Longitudinal development is parametrized with L20% and L90%.
- PID performance is checked with SPS calibration data taken in 2007.
 - 50-200GeV for electrons
 - 150, 350 GeV for protons
- ~90% purity both for gamma and hadron.
- PID study is still ongoing.

Spectra of 900GeV data

- QGSJET2 seems to agree with data, but conclusion is too early.
- Note that the detector response for hadron showers is under study with SPS 350, I 50 GeV proton data and very conservative systematic error for energy scale + I 0%-4% must be taken into account.

More precise analysis is ongoing.

Analysis@7TeV

Statistics

Total Statistics in March 30 - May 30

	Gamma-like	Hadron-like	π^{0}
Arml	1.7E7	3.3E7	1.0E5
Arm2	1.8E7	3.5E7	2.3E5

Data taking has been carried out quite stably.

TT⁰ measurement

Event display of $\pi^0(2\text{-gamma})$

Spectra of 7TeV data

- High statistics
 - Only 1% of total data are used
- Very clean sample
 - Beam-gas BG is ~ 1%

Ongoing studies:

- Model discrimination
- η, strange meson
- LPM effects

n search

Removal and next phase

- LHCf will go out from the TAN(LHCf site) day after tomorrow.
 - Plastic scinitillator degrades a few % by ~6Gy on July 15th(~200nb⁻¹).
- "Post"-calibration by a SPS test beam are planned on October.
- Revisit LHC at the next energy upgrade. R&D and fabrication of radiation-hard GSO scinitillator are on-going for the "phase-2" of the LHCf detector.

GSO bar GSO scintillator

Conclusions

- LHCf has started physics program quite successfully.
 - 100K showers at 900GeV (Run2009 + 2010)
 - 35M showers and 330K π^0 at 7TeV (Run2010 until May technical stop)
- Detectors work fine and stably.
 - Almost negligible beam-gas background ~1%
 - The π^0 peak demonstrates good performance as expected.
- Detectors will leave LHC tunnel on Tuesday.
- Rapid progress in analysis.
 - 900GeV results and 7TeV results, need more precise studies
 - Finalizing SPS beam test data (energy scale, PID and hadron shower)

Supplements

Hadron interaction models

Measurements of very forward particles using the highest energy accelerator have a key to constrain the uncertainties unavoidable in the high-energy cosmic ray experiments.

Front Counter

Front counter...

- consists of 4 scintillation counters, 2 for X and 2 for Y.
- has large aperture (80mmx80mm).
- can work prior to the stable beam declaration.
- acts as the luminosity monitor and beam-gas BG monitor.

Detector Stabilities

Calorimeter

Analysis of 900GeV run

- Stable beams at 900GeV, Dec. 6th-15th in 2009.
 - $\sim 5 \times 10^5$ collisions at IPI.
 - 2,800 and 3,700 showers in Arm I and Arm 2.
- $^{\odot}$ Absolute energy calibration by π^0 taken at 7TeV run.

Expected spectra with 10⁷ collisions.

Large model dependence can be seen even in 900GeV.

Detector stability

Event display

Air shower development

QGSJET2, Arm1-Normal

Summary of Expected number of events

	QGSJET2			SIBYLL		Pythia			
	η	π^0	η/π^0	η	π^0	η/π^0	η	π^0	η/π^0
Arm1 (Normal)	0.08	46.9	0.002	0.01	46.7	0.0002			
Arm1 (-20mm)	7.35	238.4	0.031	0.21	191.9	0.0011			
Arm2 (Normal)	1.6	123.7	0.012	0.10	110.8	0.0009	0.15	150	0.0010
Arm2 (-10mm)	3.36	191.3	0.018	0.21	165.1	0.0013	0.1	169	0.00059

Acceptance gain due to Crossing Angle

No crossing angle

100 μ rad crossing angle

A very significant gain in acceptance is clearly visible!